JAMES-STEIN TYPE ESTIMATORS IN LARGE SAMPLES WITH APPLICATION TO THE LEAST ABSOLUTE DEVIATION ESTIMATOR BY TAE-HWAN KIM AND HALBERT WHITE DISCUSSION PAPER 99-04 FEBRUARY 1999 James-Stein Type Estimators in Large Samples with Application to The Least Absolute Deviation Estimator

نویسندگان

  • Tae-Hwan Kim
  • Halbert White
  • Clive Granger
  • James Hamilton
  • Patrick Fitzsimmons
چکیده

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point, which makes it possible that the “prior” becomes more accurate as the sample size grows. We provide an analytic expression for the asymptotic risk of James-Stein type estimators shrunk towards a datadependent point and prove that they have smaller asymptotic risk than the base estimator. Shrinking an estimator toward a data-dependent point turns out to be equivalent to combining two random variables using the James-Stein rule. We propose a general combination scheme which includes random combination (the James-Stein combination) and the usual nonrandom combination as special cases. As an example, we apply our method to combine the Least Absolute Deviations estimator and the Least Squares estimator. Our simulation study indicates that the resulting combination estimators have desirable finite sample properties when errors are drawn from symmetric distributions. Finally, using stock return data we present some empirical evidence that the combination estimators have the potential to improve out-of-sample prediction in terms of both mean square error and mean absolute error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JAMES-STEIN TYPE ESTIMATORS IN LARGE SAMPLES WITH APPLICATION TO THE LEAST ABSOLUTE DEVIATIONS ESTIMATOR BY TAE-HWAN KIM AND HALBERT WHITE DISCUSSION PAPER 99-04R MAY 2000 James-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviations Estimator

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent poi...

متن کامل

James-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviations Estimator

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent poi...

متن کامل

Estimation , Inference , and Specification Testing for Possibly

To date the literature on quantile regression and least absolute deviation regression has assumed either explicitly or implicitly that the conditional quantile regression model is correctly specified. When the model is misspecified, confidence intervals and hypothesis tests based on the conventional covariance matrix are invalid. Although misspecification is a generic phenomenon and correct spe...

متن کامل

Active Portfolio Management: The Power of the Treynor-Black Model

The performance of active portfolio methods critically depends on the forecasting ability of the security analyst. The Treynor-Black model provides an efficient way of implementing active investment strategy. Despite its potential benefits, the Treynor-Black model appears to have had little impact on the financial community, mainly because it has been believed that the precision threshold of al...

متن کامل

Asymptotic and Bayesian Confidence Intervals for Sharpe Style Weights By

Sharpe style regression has become a widespread analytic tool in the financial community. The style regression allows one to investigate such interesting issues as style composition, style sensitivity, and style change over time. All previous methods to obtain the distribution and confidence intervals of the style coefficients are statistically valid only in the special case in which none of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999